{-# OPTIONS --type-in-type #-} -- In this post I'll shortly introduce ornaments and describe an "unbiased" version of them. -- You might want to read some actual paper first (I recommend [1]). module UnOrn where open import Function open import Relation.Binary.PropositionalEquality open import Data.Product infixr 0 _∸>_ infixr 6 _⊛_ _∸>_ : ∀ {ι α β} {I : Set ι} -> (I -> Set α) -> (I -> Set β) -> Set _ A ∸> B = ∀ {i} -> A i -> B i -- I'll be using the same representation of descriptions as in previous posts. data Desc (I : Set) : Set where var : I -> Desc I π : (A : Set) -> (A -> Desc I) -> Desc I _⊛_ : Desc I -> Desc I -> Desc I ⟦_⟧ : ∀ {I} -> Desc I -> (I -> Set) -> Set ⟦ var i ⟧ B = B i ⟦ π A D ⟧ B = ∀ x -> ⟦ D x ⟧ B ⟦ D ⊛ E ⟧ B = ⟦ D ⟧ B × ⟦ E ⟧ B Extend : ∀ {I} -> Desc I -> (I -> Set) -> I -> Set Extend (var i) B j = i ≡ j Extend (π A D) B j = ∃ λ x -> Extend (D x) B j Extend (D ⊛ E) B j = ⟦ D ⟧ B × Extend E B j data μ {I} (D : Desc I) j : Set where node : Extend D (μ D) j -> μ D j -- How are a description and its ornamented version related? -- 1. They both have the same amount of inductive occurrences. -- Usually this rule sounds like "they both have the same tree structure", but we're going to -- handle higher-order inductive occurrences which break this pattern. -- 2. An element of an ornamented data type can always be coerced to the corresponding -- element of the original data type, i.e. vectors and sorted lists can be coerced to just lists. -- So when one data type can be coerced to another? -- 1. If the former simply contains more information that the latter. -- We throw this information away and get lists from vectors. -- 2. If the former is an instance of the latter. Here is an example: module InstExample where open import Data.Bool.Base open import Data.List.Base data D₀ : Set where C₀ : ∀ {A} -> List A -> D₀ data D₁ : Set where C₁ : List Bool -> D₁ D₁→D₀ : D₁ -> D₀ D₁→D₀ (C₁ xs) = C₀ xs -- `D₀` is more general than `D₁` and hence `D₁` can be coerced to `D₀` (condition 2). -- Besides, they have the same skeleton (condition 1): both have one non-recursive constructor, -- so `D₁` is an ornamented version of `D₀` -- These are two standard first-order ornaments, but the `Desc` used in this post allows to -- encode data types with higher-order inductive occurrences, so we have more ornaments as well. -- 3. If you drop an argument from a higher-inductive occurrence, -- you'll get an ornamented data type. An example: module RemoveExample where open import Data.Bool.Base open import Data.List.Base data D₀ : Set where C₀ : (Bool -> List Bool -> D₀) -> D₀ data D₁ : Set where C₁ : (Bool -> D₁) -> D₁ D₁→D₀ : D₁ -> D₀ D₁→D₀ (C₁ f) = C₀ (λ b _ -> D₁→D₀ (f b)) -- 4. If you add an argument to a higher-order inductive occurrence among with a value -- from which the argument can be computed, you'll get an ornamented data type as well. An example: module AddExample where open import Data.Bool.Base open import Data.Nat.Base open import Data.List.Base data D₀ : Set where C₀ : (Bool -> D₀) -> D₀ data D₁ : Set where C₁ : (Bool -> ℕ × (List Bool -> D₁)) -> D₁ {-# TERMINATING #-} D₁→D₀ : D₁ -> D₀ D₁→D₀ (C₁ f) = C₀ (λ b -> D₁→D₀ (uncurry (λ n k -> k (replicate n true)) (f b))) -- This might look silly, but here is how we can combine (2), (3) and (4) in a useful way: module Example where open import Data.Bool.Base open import Data.Nat.Base open import Data.List.Base data D₀ : Set where C₀ : (Bool -> D₀) -> D₀ -- By (4): data D₁ : Set where C₁ : (Bool -> ℕ × (ℕ -> D₁)) -> D₁ -- By `(A -> B × C) ≃ (A -> B) × (A -> C)`: data D₂ : Set where C₂ : ((Bool -> ℕ) × (Bool -> ℕ -> D₂)) -> D₂ -- By `(A × B -> C) ≃ (A -> B -> C)`: data D₃ : Set where C₃ : (Bool -> ℕ) -> (Bool -> ℕ -> D₃) -> D₃ -- By (3): data D₄ : Set where C₄ : (Bool -> ℕ) -> (ℕ -> D₄) -> D₄ D₄→D₀ : D₄ -> D₀ D₄→D₀ (C₄ i f) = C₀ (λ b -> D₄→D₀ (f (i b))) -- Note that by (2) we can instantiate `Bool -> ℕ` to, say, -- `λ b -> if b then 1 else 0` and thus get data D₅ : Set where C₅ : (ℕ -> D₅) -> D₅ -- which is therefore an ornamented version of `D₁`. This inference was a bit long: with -- ornaments it's just "remove Bool; add ℕ". -- So here is how the usual "first-order-biased" ornaments look like data Con : Set where fo ho : Con module Usual where data _⁻¹_ {A B : Set} (f : A -> B) : B -> Set where arg : ∀ x -> f ⁻¹ f x data Orn {I J : Set} (e : J -> I) : Con -> Desc I -> Set where var : ∀ {i c} -> e ⁻¹ i -> Orn e c (var i) keep : ∀ {A D c} -> (∀ x -> Orn e c (D x)) -> Orn e c (π A D) _⊛_ : ∀ {D E c} -> Orn e ho D -> Orn e c E -> Orn e c (D ⊛ E) abst : ∀ {D} A -> (A -> Orn e fo D) -> Orn e fo D inst : ∀ {A D} x -> Orn e fo (D x) -> Orn e fo (π A D) drop : ∀ {A D} -> Orn e ho D -> Orn e ho (π A λ _ -> D) give : ∀ {A D} -> A -> Orn e ho D -> Orn e ho D -- The first three constructors work in any context. -- The next two work only in a first-order context. -- The last two work only in a higher-order context. -- When coercing elements of ornamented data types, we of course need to coerce their indices -- as well, so there is a `e : J -> I` that does this. -- `var` essentially receives a new index `j`, an old index `i` and a proof that `e j ≡ i`. -- `keep` simply allows to go under a `π` without touching its content. -- Same for `_⊛_`. The first ornament that `_⊛_` receives is always defined in -- a higher-order context as it should. -- `abst` is for (1): it adds a new argument to a constructor. -- `inst` is for (2): it instantiates some argument. -- `drop` is for (3): it drops an argument to a higher-order inductive occurrence. -- `give` is for (4): it adds a new argument to a higher-order inductive occurrence -- and receives a value for it. -- Ornaments are interpreted as follows: ⟦_⟧ᵒ : ∀ {I J D c} {e : J -> I} -> Orn e c D -> Desc J ⟦ var (arg j) ⟧ᵒ = var j ⟦ keep O ⟧ᵒ = π _ λ x -> ⟦ O x ⟧ᵒ ⟦ O ⊛ P ⟧ᵒ = ⟦ O ⟧ᵒ ⊛ ⟦ P ⟧ᵒ ⟦ abst A O ⟧ᵒ = π A λ x -> ⟦ O x ⟧ᵒ ⟦ inst x O ⟧ᵒ = ⟦ O ⟧ᵒ ⟦ drop O ⟧ᵒ = ⟦ O ⟧ᵒ ⟦ give {A} x O ⟧ᵒ = π A λ _ -> ⟦ O ⟧ᵒ -- So `abst` and `give` add arguments and `inst` and `drop` remove them as expected. -- But look at the type signature of `drop`: -- drop : ∀ {A D} -> Orn e ho D -> Orn e ho (π A λ _ -> D) -- The second argument of `π` must always ignore its argument. I.e. if we have -- data D : Set where -- C : (∀ n -> Fin n -> D) -> D -- we can't remove `n` even if we remove `Fin n` later too. -- `give x` has a similar defect: in a resulting description no type can depend on `x`. -- Here are unbiased ornaments that don't have these drawbacks: data Orn {I J : Set} (e : J -> I) : Con -> Desc I -> Desc J -> Set where var : ∀ {j c} -> Orn e c (var (e j)) (var j) keep : ∀ {A D E c} -> (∀ x -> Orn e c (D x) (E x)) -> Orn e c (π A D) (π A E) _⊛_ : ∀ {D₁ D₂ E₁ E₂ c} -> Orn e ho D₁ E₁ -> Orn e c D₂ E₂ -> Orn e c (D₁ ⊛ D₂) (E₁ ⊛ E₂) abst : ∀ {A D E} -> (∀ x -> Orn e fo D (E x)) -> Orn e fo D (π A E) inst : ∀ {A D E} x -> Orn e fo (D x) E -> Orn e fo (π A D) E drop : ∀ {A D E} -> (∀ x -> Orn e ho (D x) E) -> Orn e ho (π A D) E give : ∀ {A D E} x -> Orn e ho D (E x) -> Orn e ho D (π A E) -- The interpretation of an ornament now is simply the second description that `Orn` receives. -- Note how the `abst` and `drop` constructors are beautifully symmetric, -- as well as the `inst` and `give` constructors. -- `drop` essentially says "you can use the removed "x" as soon as the final result -- doesn't depend on it". And `give` receives an argument on which other types can depend. -- Here is a sanity check -- deriving from an ornament its algebra: Alg : ∀ {I} -> (I -> Set) -> Desc I -> Set Alg B D = Extend D B ∸> B forgetHyp : ∀ {I J D E B} {e : J -> I} -> (O : Orn e ho D E) -> ⟦ E ⟧ (B ∘ e) -> ⟦ D ⟧ B forgetHyp var y = y forgetHyp (keep O) f = λ x -> forgetHyp (O x) (f x) forgetHyp (O ⊛ P) (x , y) = forgetHyp O x , forgetHyp P y forgetHyp (drop O) y = λ x -> forgetHyp (O x) y forgetHyp (give x O) f = forgetHyp O (f x) forgetExtend : ∀ {I J D E B} {e : J -> I} -> (O : Orn e fo D E) -> Extend E (B ∘ e) ∸> Extend D B ∘ e forgetExtend var refl = refl forgetExtend (keep O) (x , e) = x , forgetExtend (O x) e forgetExtend (O ⊛ P) (x , e) = forgetHyp O x , forgetExtend P e forgetExtend (abst O) (x , e) = forgetExtend (O x) e forgetExtend (inst x O) e = x , forgetExtend O e forgetAlg : ∀ {I J D E} {e : J -> I} -> (O : Orn e fo D E) -> Alg (μ D ∘ e) E forgetAlg O = node ∘ forgetExtend O -- `drop` removes an argument to a function, so to forget `drop` is to remember that binding. -- `give` adds an argument and its value, so to forget `give` is to fill the argument with the value. -- `abst` adds an argument to a constructor, so to forget `abst` is to simply ignore the argument. -- `inst` specializes an argument to a constructor with some `x`, so to forget `inst` is to -- apply the original constructor to `x`. -- Now having the usual catamorphisms stuff mapHyp : ∀ {I B C} -> (D : Desc I) -> B ∸> C -> ⟦ D ⟧ B -> ⟦ D ⟧ C mapHyp (var i) g y = g y mapHyp (π A D) g f = λ x -> mapHyp (D x) g (f x) mapHyp (D ⊛ E) g (x , y) = mapHyp D g x , mapHyp E g y mapExtend : ∀ {I B C} -> (D : Desc I) -> B ∸> C -> Extend D B ∸> Extend D C mapExtend (var i) g q = q mapExtend (π A D) g (x , e) = x , mapExtend (D x) g e mapExtend (D ⊛ E) g (x , e) = mapHyp D g x , mapExtend E g e {-# TERMINATING #-} gfold : ∀ {I B} {D : Desc I} -> Alg B D -> μ D ∸> B gfold {D = D} f (node e) = f (mapExtend D (gfold f) e) -- We can define a generic forgetful map: forget : ∀ {I J D E} {e : J -> I} -> (O : Orn e fo D E) -> μ E ∸> μ D ∘ e forget = gfold ∘ forgetAlg module Tests where qvar : ∀ {I J c i j} {e : J -> I} -> e j ≡ i -> Orn e c (var i) (var j) qvar refl = var -- Ornamenting lists into vectors: open import Data.Unit.Base open import Data.Bool.Base open import Data.Nat.Base _<?>_ : ∀ {α} {A : Bool -> Set α} -> A true -> A false -> ∀ b -> A b (x <?> y) true = x (x <?> y) false = y _⊕_ : ∀ {I} -> Desc I -> Desc I -> Desc I D ⊕ E = π Bool (D <?> E) infixr 5 _∷_ _∷ᵥ_ list : Set -> Desc ⊤ list A = var tt ⊕ (π A λ _ -> var tt ⊛ var tt) List : Set -> Set List A = μ (list A) tt vec : Set -> Desc ℕ vec A = var 0 ⊕ π ℕ λ n -> π A λ _ -> var n ⊛ var (suc n) Vec : Set -> ℕ -> Set Vec A = μ (vec A) pattern [] = node (true , refl) pattern _∷_ x xs = node (false , x , xs , refl) pattern _∷ᵥ_ {n} x xs = node (false , n , x , xs , refl) list→vec : ∀ A -> Orn (λ (_ : ℕ) -> tt) fo (list A) (vec A) list→vec A = keep $ var <?> abst λ n -> keep λ x -> var ⊛ var -- A simple test: test : forget (list→vec ℕ) (4 ∷ᵥ 9 ∷ᵥ 3 ∷ᵥ 8 ∷ᵥ []) ≡ 4 ∷ 9 ∷ 3 ∷ 8 ∷ [] test = refl -- A more contrived example: open import Data.Fin data D₀ m : Fin (suc m) -> Set where C₀ : (∀ i -> D₀ m (suc i)) -> D₀ m zero data D₁ : ℕ -> Set where C₁ : (∀ n -> D₁ (suc n)) -> D₁ 0 coe : ∀ {m} -> ℕ -> Fin (suc m) coe {suc m} (suc n) = suc (coe n) coe _ = zero coh : ∀ {n} {i : Fin (suc n)} -> coe (toℕ i) ≡ i coh {zero } {zero } = refl coh {zero } {suc ()} coh {suc n} {zero } = refl coh {suc n} {suc i } = cong suc coh D₁→D₀ : ∀ {m n} -> D₁ n -> D₀ m (coe n) D₁→D₀ {m} (C₁ f) rewrite coh {m} {zero} = C₀ (λ i -> subst (D₀ _) coh (D₁→D₀ (f (toℕ i)))) -- We remove `i : Fin m` in `D₀` on which an index depends and replace it with `n` on which -- an index depends as well. -- And with encoded `D₀` and `D₁`: d₀ : ∀ m -> Desc (Fin (suc m)) d₀ m = (π (Fin m) λ i -> var (suc i)) ⊛ var zero d₁ : Desc ℕ d₁ = (π ℕ λ n -> var (suc n)) ⊛ var 0 d₁→d₀ : ∀ m -> Orn coe fo (d₀ m) d₁ d₁→d₀ m = (drop λ i -> give (toℕ i) (qvar coh)) ⊛ qvar coh D₀′ : ∀ m -> Fin (suc m) -> Set D₀′ = μ ∘ d₀ D₁′ : ℕ -> Set D₁′ = μ d₁ D₁′→D₀′ : ∀ {m n} -> D₁′ n -> D₀′ m (coe n) D₁′→D₀′ = forget (d₁→d₀ _) module References where -- [1] "Ornamental Algebras, Algebraic Ornaments", Conor McBride -- https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/LitOrn.pdf
Sunday, 31 July 2016
Unbiased ornaments
Subscribe to:
Posts (Atom)